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The  relationship  among  land  cover,  topography,  built  structure  and  stream  water  quality  in the  Portland
Metro  region  of  Oregon  and  Clark  County,  Washington  areas,  USA,  is analyzed  using  ordinary  least  squares
(OLS)  and  geographically  weighted  (GWR)  multiple  regression  models.  Two  scales  of  analysis,  a  sectional
watershed  and  a buffer,  offered  a local  and  a global  investigation  of  the  sources  of  stream  pollutants.
Model  accuracy,  measured  by  R2 values,  fluctuated  according  to the  scale,  season,  and  regression  method
used. While  most  wet  season  water  quality  parameters  are  associated  with  urban  land  covers,  most
eywords:
eographically weighted regression
ater quality

evelopment

dry  season  water  quality  parameters  are  related  topographic  features  such  as elevation  and  slope.  GWR
models, which  take  into  consideration  local  relations  of  spatial  autocorrelation,  had  stronger  results  than
OLS regression  models.  In  the  multiple  regression  models,  sectioned  watershed  results  were  consistently
better  than  the  sectioned  buffer  results,  except  for  dry  season  pH  and  stream  temperature  parameters.
This  suggests  that  while  riparian  land  cover  does  have  an  effect  on water  quality,  a  wider  contributing
area  needs  to  be  included  in  order  to  account  for distant  sources  of  pollutants.
. Introduction

The effect of land development on natural systems is frequently
uantified by examining the relationship between land cover and
treams [1–4]. Land development, in the form of urban and agricul-
ural land usage, increases impervious surfaces, has been found to
ave a negative correlation with stream health, typically increas-

ng flash runoff and nutrient and heavy metal loads [5–9]. This
ssociation implies that without abatement efforts, increases in
evelopment can lead to decreases in water quality, which affects
afe drinking water availability, recreational opportunities, flood-
lains, and habitat [10–13].

With this connection between land development and poor
ater quality, land managers are being encouraged to use geo-

raphic information systems (GISs) to identify problem areas and
evelop projects to improve stream health [10,11,14–16]. Spatial
nalysis techniques allow users to view and analyze geographic
ata, which includes, water quality, climate, topographic, and land-
cape variables, quickly and efficiently. Restoration projects or

torm water retention ponds can be planned by using GIS to identify
tream reaches and areas that would most benefit [17].

∗ Corresponding author. Tel.: +1 503 725 3162; fax: +1 503 725 3166.
E-mail address: changh@pdx.edu (H. Chang).

304-3894/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2011.12.068
© 2012 Elsevier B.V. All rights reserved.

In humid temperate climates, where there are substantial sea-
sonal variations in precipitation and temperature, constituent
concentrations vary due to flow regimes. These seasonal regimes
need to be considered when studying particulate and other pol-
lutants’ concentrations in order to account for dilution and runoff
[7,15,18]. Water quality measures, such as phosphorus and stream
water temperature, peak during the low flow, warm season,
unlike many other parameters that fluctuate based on runoff.
Studies have found that the influencing land cover for specific
water quality measurements changes according to the season
[15,19].

Selecting sample sites near anthropogenic or natural sources
of elements such as nitrogen or phosphorus can yield valuable
results [19]. Wang et al. [19] found that industrial sites along the
Grand Canal in China consistently displayed higher gasoline and
metal levels than samples taken elsewhere. A similar finding was
reported in the study of the lower Han River basin in South Korea,
where sites downstream of industrial and urban areas were found
to have worse water quality than those upstream [20]. Located at
the confluence of the Willamette and Columbia rivers, Portland
– Vancouver’s urban and industrial development has negatively
impacted the first and second-order urban streams. Lower levels
of DO and higher levels of nutrients and water temperatures are

common in these low elevation streams [21,22].

The scale of analysis is important because it determines what
area researchers use to link land cover with a stream site’s chem-
ical and physical properties. By using the watershed scale, an area

dx.doi.org/10.1016/j.jhazmat.2011.12.068
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:changh@pdx.edu
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Fig. 1. Map  of the study area.

and watershed characteristics. Each government agency collected
data based their sampling methods and quality control on USEPA
standards (Table 1).

Table 1
Sampling methods.

Portland Clark County Burnt Bridge

EC SM 2510 B Electrode – on site SM2510B
DO  SM 4500-O G Membrane electrode – on site On site
NN EPA 300.0 EPA 353.2 SM4500NO3I
pH  SM 4500-H B Glass electrode – in situ On site
TP  EPA 365.4 EPA 365.1 SM4500PF
B. Pratt, H. Chang / Journal of Haza

ot located along or even near the stream might be attributed to
eing the source of a pollutant. Including an entire stream reach
ight also be unreasonable, as the stream dilutes pollutants before

hey are sampled and may  be caught up and absorbed by plants or
oils along the stream [e.g. 23, 24]. Cunningham et al. [2] suggests
hat watershed managers focus on simple projects in riparian areas
o improve water quality in the general area being targeted and
ownstream. Removing a parking lot next to a stream, for exam-
le, would reduce flashy flooding and allow runoff to seep into the
round before joining the stream.

Multivariate regression model allows researchers to assume a
iverse array of landscape parameters in order to derive the causes
f pollutants. Broad categories, such as urban or residential land
overs, assume a heterogenic landscape [25,26]. These categories
gnore, or do not fully incorporate changes in density or simply
ifferences in anthropogenic development and physical geogra-
hy across a space [17]. By using a spatially explicit multivariate
pproach, non-point sources such as agriculture as well as variables
uch as street density may  be incorporated into a finer resolution
nalysis [27].

The objectives of this paper are to examine the relationship
etween landscape variables and water quality in the Portland,
regon and Clark County, Washington area by answering three
uestions. First, does the season matter in determining what land
over has the most influence on water quality? Second, does the
cale of analysis have an effect on the results, and if so, what are
hey? And third, does GWR, which incorporates spatial autocorre-
ation, offer betters predictive power than a global OLS regression

odel?

. Methods

.1. Study area

The Portland Metropolitan area in Oregon and Clark County,
ashington, lie on opposite sides of the Columbia River in the

acific Northwest (Fig. 1). This region experiences a Marine west
oast climate with wet, mild winters and cool, dry summers. Tem-
eratures average 15–27 ◦C in the summer months, to 1–10 ◦C in
he winter. Peak urban stream flow occurs during the wet win-
er months, while the dry summer months experience lower flows
Fig. 2). Individual stream’s average flows vary from 0.5 to 30 m3/s
nnually [28,29].

Streams in both areas are listed on the federal 303d list for water
uality violations. In Portland, nearly the entire stream reaches
f Tryon Creek and Johnson Creek are listed for water tempera-
ure [22]. Johnson Creek is also listed for high E. coli levels, and
n the west side Fanno Creek is listed for toxins. In Clark County,
he upper half of Burnt Bridge Creek, an urban stream running
hrough Vancouver, is listed for multiple reasons, including water
emperature, pH, and E. coli [30]. Portions of Salmon Creek are listed
or temperature, pH, and dissolved oxygen violations. Other listed
treams in the county appear for DO and temperature violations.
wo watersheds, Jones Creek and Chelatchie Creek, are not listed;
heir primary land covers are forest and agriculture.

.2. Stream data

We collected water quality data from several government agen-
ies, and downloaded spatial stream data from the US Geological
urvey (USGS) National Hydrography Dataset [31]. Washington

ater quality data was collected from Washington Department of

cology [30], as well as Clark County Environmental Services [32].
he Portland Bureau of Environmental Services has been collecting
onthly stream data at select sites consistently since 1998–2010.
Fig. 2. Average monthly rainfall and precipitation for Portland, November
2006–April 2009.

Twenty-one sites from Portland and 30 sites from Clark County
were selected based on the available sample dates, parameters,
TS  SM 2540 B EPA 160.3 –
Temp SM 2550 B Thermistor in situ

Portland data from the Bureau of Environmental Services; Clark County data, except
Burnt Bridge, via CCES; Burnt Bridge data via WADE.
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Seven water quality parameters were chosen based on its impor-
ance to human and aquatic life in both Portland and Vancouver
tudy sites. Nitrogen nitrate NO3

+–N (NN) and total phosphorus
TP) are generally considered to be direct measures of human
ctivity in an area, as fertilizers, vehicle emissions, and impervi-
us surfaces increase the amount of NN and TP in their respective
atural cycles [12]. Total solids (TS) can be used as a quantita-
ive measure of aesthetics as suspended sediments in streams

ake the water appear cloudy. This study also used conduc-
ivity (EC), dissolved oxygen (DO), pH, and water temperature
Temp). These measurements are associated with predicting algae
loom likelihood and habitat quality for fish and other aquatic
nimals.

In order to account for the seasonal variation in stream flows, the
ata were split into wet (November–April) and dry (May–October)
easons. The seasonal data were aggregated to a geometric mean
or the entire period. The geometric mean was used because it is

 slightly more conservative estimate of aggregated water quality
arameters than an arithmetic mean. It is also more appropriate
o use a geometric mean when data are not normally distributed,
hich was the case for two parameters.

.3. Independent variables

Topographic and landscape variables are shown in Table 2.
he standard deviation of slope, derived here from a 10 m digi-
al elevation model, has been used in past studies as a measure
f topography complexity where the study area is relatively flat,
hich is the case in many of the urban watersheds [25]. The

006 US National Land Cover Dataset was used to categorize per-
ent urban, forest, agriculture, and wetlands in each area, with
reas of less than 0.1% not included for analysis. Structural vari-
bles include single family residential (SFR) taxlots and street
ensity. These spatial data allowed researchers a finer scale with
hich to examine land development within the study area. The
ercent area of SFR provided a measure of residential housing

mpact. Average building age of SFR homes built before 2010
as used as a measure of historical development. Street density
rovides a measure of habitat fragmentation as well as imper-
ious surfaces. We  used the 2010 taxlot and streets datasets
roduced by Clark County and the Portland Metropolitan Author-

ty.

.4. Spatial analysis

The land area associated with a sample point is often the sub-
atershed upstream of the sampling site [8,10,33]. The size of this

rea varies based on the size of the watershed and the position of
he sampling point. Distant sources of pollutants, whether agricul-
ure or urban in nature, may  be diluted in the stream or stored in

he soils before reaching the sample station, thereby giving an inac-
urate measure of association between the land cover and water
uality parameter [8].  By examining just the riparian area around

 stream, delineated as a constant distance from the stream, this

able 2
ndependent variables used in analysis.

Agency Source Data Derived variable

USGS National elevation dataset (10 m)  Mean slope
Slope standard d
Mean elevation

USGS  National land cover dataset (30 m)  Agriculture
Forest
Urban
Wetland

NRCS  Soil types ABCD hydrologic
Fig. 3. Contribution watershed areas to sampling points.

issue is partly resolved. A consistent distance, however, has not
been agreed on in literature and riparian buffers range from 8 m to
200 m [24,34–36].

In  order to determine the association between landscape vari-
ables and water quality at each monitoring site, this study uses
sectioned watersheds and riparian buffers. These sectioned zones
limit the area associated with the sample site to the next site
immediately upstream (Fig. 3). The riparian buffer was  used to
determine if the immediate environment surrounding the stream
has a stronger relationship than the entire area. Watersheds were
delineated from the 51 sample sites using the 10 m DEM in ArcGIS
v10.0, while the riparian areas were created by buffering the
streams 100 m.  The downstream watersheds and riparian areas
were clipped to the upstream watershed, where applicable, to
create sectioned watersheds and buffers. The area of SFR was nor-
malized to a percent coverage of the area, and the streets layer
was  normalized to length (m)/(1000) area (m2). SFR house age was
averaged from SFR taxlots present in the sectioned area. Land cover
and topographic variables were calculated using the Spatial Analyst
tools in ArcGIS.

2.5. Normalization and variable statistics

All variables were tested for a normal distribution using the one-
sample Kolmogorov–Smirnov test, which tests for normality by
examining the observed and theoretical distributions and deter-
mining if the difference between them is significant [37]. Of the
seven seasonal water quality parameters, wet and dry for each
(total 14), three were found to be skewed. The dry season NN and
DO were transformed exponentially and logarithmically, respec-
tively, while a single record was removed from the dry season EC
to resolve skewness. Of the independent variables, normalization
was  achieved by removing records less than 10% and performing

log transformations (Table 3). Soil type A was  removed entirely
because it was  present in only two watersheds and one buffer
area.

 Original data

eviation
Elevation

Pasture, cultivated crops.
Deciduous forest, evergreen forest, mixed forest.
Low, medium, high intensity developed, open space.
Woody wetlands, emergent herbaceous wetlands.

 soil groups Soil survey geographic (SSURGO) database
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Table 3
Independent variable statistics.

Buffer Watershed

Min  Max  Average Stdev n Min Max  Average Stdev n

Urban 12.71b 100 73.53 27.83 48 0.89 100 58.68 31.05 51
Forest  0.1a 85.41 20.26 22.29 43 0.7 93.71 26.47 22.95 41
Agriculture 0.16a 43.14 14.31 14.12 26 0.23a 56.65 21.29 17.53 23
Wetland 0.01a 10.83 2.9 2.91 34 0.68a 19.39 7.22 5.19 33
Mean  slope 0.31 33.5 13.07 7.85 51 1.11 33.53 10.49 7.8 51
Slope  StDev 1.2 25.62 11.95 5.73 51 2.07 25.38 10.55 5.22 51
Mean  elev. 10.38 546.47 114.34 93.52 51 39.69 593.85 130.18 95.68 51
Street  density 0.63 15.37 6.92 4.11 51 1.04 21.84 10.45 5.04 51
%SFR 2.8 72.3 33.13 19.07 50 14.98 71.14 42.95 14.03 50
SFR  age 2.8a 72.3 33.13 19.07 50 14.98 71.14 42.95 14.03 50
per b 0.84a 100 58.84 33.76 34 – – – – –
per  c – – – – – 1.69a,c 100 56.66 39.89 36
per d 0.22a 100 28.14 27.8 39 0.28a 93.84 14.37 18.39 42

Variables before log or exponential transformation.

ed.
ed.
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puts include local residuals and R2 results, as well as a global R2

[38]. The global R2 generated by ArcGIS is defined as the propor-
tion of variable variance the regression model accounts for [39].

Table 4
Multivariate OLS regression models.

Regression Model

Buffer
Wet  Season

EC 0.974 (Urban) + 58.896
DO 1.417 (Forest) + 2.615 (SFR age) + 5.901
NN −0.038 (%SFR) – 0.053 (Mean slope) + 3.751
pH 0.031 (StDev slope) + 0.006 (Urban) + 6.024
TP 0.042 (Urban) + 4.486
TS 0.533 (Urban) + 83.439
Temp 0.03 (Urban) – 0.089 (StDev slope) + 0.005 (Mean

elevation) + 5.615
Dry Season

EC 0.486 (Urban) – 0.124 (Mean elevation) + 139.099
DOa 627.083 (Mean slope) + 10,871.260 (SFR age) –

11,571.635
NNb −0.003 (Mean elevation) – 0.008 (%SFR) + 0.59
pH 0.295 (SFR age) – 0.002 (Mean elevation) + 0.029

(StDev slope) + 6.963
TP −0.017 (Mean elevation) + 0.346 (Streets) + 9.713
TS −0.409 (Mean elevation) + 5.63 (Mean slope) – 6.176

(StDev Slope) + 186.291
Temp −0.01 (Mean elevation) + 0.191 (StDev slope) – 0.017

(%SFR) – 0.096 (Mean slope) + 15.06
Watershed

Wet  Season
EC 5.315 (Streets) – 2.229 (StDev slope) + 93.006
DO  0.13 (Mean slope) + 0.021 (SFR age) + 8.838
NN 0.013 (SFR age) – 0.006 (Mean elevation) – 0.022

(%SFR) + 2.816
pH 0.006 (Urban) + 6.934
TP 0.053 (Urban) + 4.024
TS −1.728 (StDev slope) + 3.604 (Streets) + 99.903
Temp 0.152 (Streets) – 0.019 (%SFR) + 6.481

Dry  Season
EC 2.596 (Streets) – 0.193 (Mean elevation) + 155.069
DOa 1248.699 (StDev slope) + 186.205
NNb −0.003 (Mean elevation) – 0.009 (%SFR) + 0.912
pH −0.003 (Mean elevation) + 0.035 (StDev slope) + 7.458
TP  0.076 (Urban) + 5.72
TS 2.194 (Streets) – 0.219 (Mean elevation) + 150.29
a Log 10 transformed for analysis.
b The 3 lowest values were removed to resolve non-normality and are not includ
c The 4 lowest values were removed to resolve non-normality and are not includ

.6. Statistical analysis

Multivariate OLS regression and GWR  models were developed to
xamine the relationship between the independent variables and
he water quality parameters. Multivariate analysis filters out the
ignificant variables across the landscape [17,19]. To find the inde-
endent variables with the strongest correlation with the water
arameters, stepwise multiple linear regression (SMLR) was  run

n PASW Statistics 17. With seven water quality parameters, two
easons, and two scales of analysis, 28 OLS models were generated
Table 4). SMLR models run using only those independent variables
dentified as significant at the 95% confidence level. These variables

ere then used to run GWR  and OLS regressions in ArcMap. An
dvantage of running an OLS regression in ArcMap is the output
rom the process includes the residual for each site, allowing the
esearcher to more easily test the residuals for spatial autocorrela-
ion.

A law of geography is that things that are closer together are
ore likely to be related than things that are far apart. GWR  cap-

ures the local variations by weighting closer observations greater
han those further away. OLS models are like the following.

 = ˇ0 +
p∑

i=1

ˇixi + ε (1)

 represents the dependent variable, ˇ0 is the intercept, and ˇ0xi
re the coefficient and the independent variable. ε represents the
rror term, and p is the number of independent variables.

The GWR  equation differs in that it incorporates the coordinates
f each location.

j = ˇ0(uj, vj) +
p∑

i=1

ˇi(uj, vj)xij + εj (2)

here j represents the location, the coordinates (uj, vj) for each
ocation are taken and multiplied by the local independent variable
ij . The model is calibrated using an exponential distance decay
unction.

ij = exp
−d2

ij

b2
(3)
The weight of site j as it effects site i, Wij , is calculated using the
istance (d) between sites i and j with b acting as the kernel band-
idth. The weight decreases rapidly when the kernel is smaller than

he distance. For this study, an adaptive band was used because the
density of sample sites varied across the study area. The GWR  out-
Temp −0.014 (Mean elevation) + 0.12 (StDev slope) + 14.961

All TP values were multiplied by 100 to accommodate software limitations.
a Exponentially transformed.
b Log 10 transformed.
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he residuals may  be used to test the model’s accuracy at predict-
ng local conditions by running a test for spatial autocorrelation.

e used Global Moran’s I for the residuals of both OLS and GWR
odels to test spatial dependence. Moran’s I is calculated from the

ollowing formula.

 = n
∑n

i=1(Xi − X)
2

∑n
i=1

∑n
j=1Wij(Xi − X)(Xj − X)
∑n

i=1

∑n
j=1Wij

(4)

here, Xi and Xj refer to water quality at station i and station j,
espectively. X is the overall mean water quality, and Wij is the
eight matrix. Like correlation coefficient, I is positive if both Xi

nd Xj lie either above or below the mean, while it is negative if
ne station is above the mean and the adjacent stations are below
he mean [40].

Global models assume that relationships between water quality
nd explanatory variables are the same across space. This is partic-
larly problematic given the variation in land cover and multiple
ources of pollutants. In a study of Northwest England, urban and
griculture land covers were determined to be highly correlated
ith NN levels [17]. Li et al. [24] found that NN was correlated with

orest cover during the wet season and bare land during the dry
eason. With multiple sources of pollutants and patchwork land-
capes, it is necessary to consider local conditions when modeling
ollutant loads because pollutants can have multiple sources, both
rom direct point discharge and non-point sources.

. Results

.1. Spatial and seasonal variations of water quality

As shown in Fig. 4, there are substantial variations in water
uality over space and season. Generally, higher concentrations of
onductivity, NN, pH, TP, and TS are associated with low elevation
rban land covers, and EC, TS, and TP values are lower during the
et periods than during the dry season (Fig. 4). Such spatiotempo-

al variations of water quality are related to the fact that catchment
haracteristics are heterogeneous in space and time. Precipitation
n forested areas can dilute TS and TP concentrations in winter

onths [1,2,19], while in agricultural-dominant catchment, rain
unoff can contribute to elevated level of nutrients and TS. Dur-
ng the dry season, microorganisms in the water may  be absorbing

ore DO and NN, causing lower levels, while high TP values are
ue to runoff from fertilized lawns and agricultural fields [7].  In
ost cases, NN is higher during the wet season, probably because

f runoff from impervious surfaces and the effect of dormant plants
ot absorbing nitrogen.

.2. Land cover at the two spatial scales

The land cover percentages for each buffer and watershed varied
cross the region (Fig. 5). Portland generally had less agriculture and
orest present in the watersheds. Tryon Creek (TC) and Fanno Creek
FC) have some forest present, but are mostly urban, unlike Balch
reek (BC) and the upper reaches of Johnson Creek (JC). The Salmon
reek (SC) watershed in Clark County is similar to Johnson Creek,
s the upper reaches are more heavily forested and farmed than
he lower reaches that pass through urban areas. The Burnt Bridge
BB) watershed also follows this gradient, with a few sites in the
pper part of the watershed having some agriculture present, but
ostly dominated with urban development. Other watersheds in

lark County had a mixture of land cover types, with the exception

f Jones Creek, which is almost entirely forested.

Every land cover present in the watersheds was also present in
he buffer areas. In almost every case, there is higher % urban land
over at the buffer scale then at the watershed scale. This is not
 Materials 209– 210 (2012) 48– 58

the case for wetland or forested land covers, where wetland and
forested area percentages decreased at the buffer scale in nearly
every case. Agriculture land increased at the buffer scale, albeit to
less than 1%.

3.3. Influence of scale and season

The landscape variables identified as being significant in pre-
dicting water quality varied depending on the scale of analysis and
season. At the watershed scale, street density, a measure of imper-
vious surfaces and landscape fragmentation, was  significant in five
cases (Tables 4 and 5). Likewise, forest land cover was not signif-
icant at the watershed scale, but came up as a significant variable
for explaining variations in wet  season DO at the buffer scale.

Out of all the predicted correlations, 11 relationships between
water quality parameters and explanatory variables occurred, and
the sign of the coefficients remained the same at both scales. Only
one model, dry season pH, switched from negative at the water-
shed scale to positive at the buffer scale for standard deviation
of slope. While the models were not consistent in identifying the
same independent variables for each parameter in both scales, the
variables’ relationships with the water quality parameters remain
unchanged.

Dry season results at both scales are dominated with topo-
graphic variables. Mean elevation is negatively related to dry season
EC, NN, pH, TS, and TD. As shown in Fig. 6, the areas with a lower
mean elevation have higher NN values. In several cases on Johnson
Creek and Salmon Creek, this may  be due to the higher proportion
of agriculture present (Fig. 5). Both the mean and standard devia-
tion of slope appear multiple times in dry season models. Higher
standard deviations of slope is credited with increasing Temp in
the dry season at both scales, and decreasing TS at the dry sea-
son buffer scale and the wet season watershed scale. Gentle slope
may  be acting as a literal sink for TS, slowing runoff or stopping it
entirely and allowing the water to percolate through the surface.
Less slope variability may  be increasing stream water temperature
in a similar fashion, as slow-moving water has more residence time
to absorb sunlight and heat from pavement.

Structural variables – urban, percent SFR, and SFR age –
appeared in multiple models at both scales. The urban variable is
present in EC, pH, TP, TS, and Temp wet  season buffer models, as
well as the pH and TP watershed models, positively correlated. Per-
cent SFR is negatively correlated to NN in all four models, as well
as wet  season buffer Temp and dry season watershed Temp.

The parameter’s season with the higher concentration did not
necessarily have higher R2 values (Table 6). DO and pH had stronger
models during the wet season than during the dry season at both
scales, while NN and TS had higher values during the dry season
than during the wet  season at both scales. At the watershed scale,
the wet  season acted as a better predictor of water quality than the
dry season except for TS and NN. At the buffer scale, the dry season
data with lower flows was a better predictor for five parameters,
but not for DO or pH.

3.4. Comparison of OLS and GWR  models

In every case, the global R2 value for GWR  models was higher
than that for the OLS models (Table 6). Improvements of over 20%
occurred in 18 models, 11 at the watershed scale. Of these, half are
for dry season and half for wet season models. The GWR  analy-
sis includes local R2 values for each variable. The smallest ranges,
under 0.20, occur in the buffer GWR  analyses, and with the excep-

tion of three cases, the buffer models have the smallest ranges of
local R2 values. The smaller range of values implies that the local
GWR model might be applied globally with the derived coefficients
and constants with general consistency. Wider ranges imply that
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Fig. 4. Spatial variations of w

he outlier sites have other sources of pollutants and ought to be
xamined more closely. The watershed scale had higher R2 values

han the buffer scale in 10 out of 14 cases, three in the dry season
hen runoff is less frequent or voluminous.

As described in Table 7, except the three watershed scale OLS
odels, wet season DO and pH and dry season Temp, the models
d dry season water quality.

did not have spatial autocorrelation. At these exceptions, the
results were found to be positively autocorrelated, clustered at the

5% significance level. Fig. 7 maps the GWR  and OLS residuals of wet
season DO and pH at the watershed scale. In OLS models, similar
residuals values are clustered in a few watersheds. DO  residuals
are clustered in Johnson Creek and Fanno Creek in Portland, while
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Fig. 5. Percent land cover at watershed and buffer scales.

Table  5
Regression model coefficients for explanatory variables.

Land cover Structure Topographic

Forest Urban Street density % SFR SFR age Mean elevation Mean Slope StDev slope

GWR  OLS GWR  OLS GWR  OLS GWR  OLS GWR  OLS GWR  OLS GWR  OLS GWR  OLS

Buffer Wet  Season EC + +
DO + + + +
NN − − − −
pH +  + + + + +
TP  + +
TS + +
Temp + + + + − −

Dry  Season EC + + # −
DO  + + + +
NN  − − − −
pH  + + − − + +
TP  + + − −
TS −  − + + − −
Temp  − − − − − − + +

Watershed Wet  Season EC + + − −
DO  # + + +
NN  − − + + − −
pH #  +
TP + +
TS + + # −
Temp  + + − −

Dry Season EC # + # −
DO  + +
NN  − − − −
pH  − − + −
TP  + +
TS + + − −
Temp − − + +

− indicates a negative coefficient; + indicates a positive coefficient; # indicates there is no majority positive or negative coefficient present.
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Table 6
Coefficient of determination (R2) in OLS and GWR  models at two  different spatial scales.

GWR  R2 range Buffer Watershed

Buffer Watershed GWR  OLS n GWR  OLS n

Wet  season
EC 0.12–0.9 0.35–0.83 0.69 0.48 48 0.72 0.60 51
DO 0.24–0.33 0.26–0.53 0.72 0.55 50 0.73 0.41 51
NN 0.55–0.63  0.57–0.72 0.58 0.42 32 0.59 0.51 31
pH 0.48–0.69  0.01–0.66 0.66 0.59 50 0.77 0.31 51
TP  0.16–0.51 0.07–0.49 0.38 0.24 30 0.52 0.37 30
TS  0.11–0.9 0.01–0.79 0.50 0.26 30 0.73 0.40 30
Temp  0.62–0.76 0.06–0.87 0.70 0.65 51 0.58 0.48 51

Dry  season
EC 0.04–0.9 0.05–0.74 0.72 0.28 47 0.69 0.31 48
DO 0.25–0.63  0.04–0.56 0.27 0.26 42 0.34 0.30 50
NN  0.34–0.6 0.39–0.51 0.62 0.58 32 0.67 0.63 31
pH 0.5–0.67  0–0.65 0.55 0.49 48 0.61 0.33 51
TP  0.09–0.33 0.13–0.52 0.48 0.38 27 0.44 0.29 30
TS  0.05–0.47 0.01–0.75 0.86 0.76 27 0.80 0.56 30
Temp  0.58–0.78 0.3–0.55 0.70 0.66 46 0.78 0.49 48

0 values indicate a value less than .01

Table 7
Spatial autocorrelation of residuals in GWR  and OLS models.

Buffer Watershed

GWR OLS GWR OLS

Wet  season
EC −0.14 0.01 0.02 0.11
DO  −0.01 0.03 0.10 0.39
NN −0.04 0.11 −0.24 −0.21
pH  0.01 0.12 0.01 0.24
TP 0.04 0.15 0.08 0.19
TS 0.19 0.21 0.13 0.19
Temp −0.07 0.04 0.05 0.16

Dry  season
EC −0.23 0.06 −0.19 −0.06
DO  0.00 0.02 −0.01 0.01
NN  0.03 0.09 0.02 0.09
pH  0.16 0.19 0.08 0.18
TP 0.05 0.10 0.06 0.07
TS  −0.17 −0.15 −0.11 0.00

U

Temp 0.03 0.05 

nderlined values indicates the model is autocorrelated, with a p < .05

Fig. 6. Nitrogen nitrate, dry season, sorted lo
0.11 0.27

w to high watershed mean elevation.
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H residuals are clustered in Salmon Creek in Vancouver. With
enerally lower residual values, GWR  model residuals, however,
o not show any spatial clustering.

Fig. 8 illustrates the shift in coefficient values for EC, NN, DO, pH,
S, and Temp at both scales. The EC map  is the most striking, with a
lear divide between Clark County and Portland coefficient values
or mean elevation. Elevation is credited as increasing the level of EC
n the waters in the urban watersheds of Tryon and lower Johnson
reek, as well as the more forested Balch Creek watersheds. North of
he river in Clark County, mean elevation is found to have a negative
elationship with the levels of EC. Elevation is positively associated
ith dry season pH and DO in middle Johnson Creek, but it is neg-

tively related to pH and Do in the rest of other study streams. e
levation is consistently negatively associated with Temp and NN
n all streams.

In the pH, TS, and Temp maps, clusters of higher R2 values are
vident in watersheds across the study area. Despite the diverse
andscape present in Johnson Creek, relatively high R2 values were
till reported. In Burnt Bridge Creek, a gradient of R2 values is evi-
ent, as R2 values decrease from upstream forests to downstream
rban areas. This may  be due to the sectioned method used; per-
aps the GWR  model did not capture the upstream variables as
horoughly due to the distance decay built into the analysis. Addi-
ionally, downstream urban areas may  contain other sources of
ollutants that were not included in our models.

. Discussion

.1. Water quality parameters and predicting variables
Sources of TP vary. Some studies claim underlying geology in
reas for high TP loads, while others believe that the decrease in
P is due to the TP attaching itself to sediment and settling into
he streambed [i.e., 36, 14, 18]. Bowes, Smith, and Neal used data
 Materials 209– 210 (2012) 48– 58

collected multiple times a day during high and low flow events
found that TP loads increased with the rise in streamflow during a
high-flow event, and speculated that the TP was trapped within the
river bed sediments [41]. Although TP concentration is generally
lower during the wet season in our study watersheds, in Fanno
Creek, high levels of phosphorus in soils can contribute to elevated
levels of TP concentrations during high flow events [42].

Forest land cover is positively associated with wet season DO
at the buffer scale. This result was  found in another study, where
high DO levels were associated with unmanaged forest land [13].
Given that the present vegetation ought to be absorbing the oxygen
in the water, this leads to speculation that the DO values might be
much higher or vegetation may  not be acting efficiently [7].  In Mis-
erendino’s study [13], EC was  found to be positively correlated with
forest land cover, however other studies found a negative relation-
ship [11,24].  The type of plant may  be affecting the water chemistry,
and so a finer scale of analysis may  be useful with consideration as
to the type of vegetation present.

Urban land cover at the buffer scale was  found to be positively
correlated with EC [5,8,13]. A study in Boston found that residential
land had a positive correlation with conductance however this was
not seen here using the %SFR variable [38]. Urban land cover has
been found to be positively correlated with a number of parame-
ters, including EC, DO, NN, and TS [3,5,7–10,43]. This result is not
unexpected, as surfaces collect particulates and chemicals that are
flushed out during rain events into nearby streams. Residential land
cover, however, can act as a sink for NN. This is similar to Li et al.
[44] who  found that NN had a negative correlation with vegetation
coverage. However, the actual makeup of the residential land in
this case is unknown. These areas may  be completely paved over
or have large, fertilized lawns. Its appearance in models for NN and
Temp suggest that lawns are retaining water and allowing runoff
to slow down and percolate through the soil.

The importance of topography has been noted in several other
studies [15,25,34,36].  Slope can act as sinks or sources for particu-
lates, as areas with high variability may  act as sinks and steep slopes
can hurry runoff to the stream, picking up particulates along the
way. Besides the topographic variables, street density was found
to be significant at the watershed scale in 10 models. This is likely
tied to the surface of trafficked streets funneling particulate-laden
runoff into streams [45].

4.2. Scale

The watershed scale of analysis clearly generated a stronger
model than the buffer scale. Carter et al. [46] noted that storm water
mitigation practices were not being fully exploited at the water-
shed scale. Instead of identifying non-point sources, direct inputs to
streams were identified and mitigation projects built around them.
In this study, street density, urban and residential land covers, as
well as topographic variables played important roles in predicting
stream water quality. The finer resolution of this data, both in terms
of spatial as well as categorically, indicates that general land cover
categories, i.e., urban, do not capture key variances in land uses
affecting water quality. Lee et al. [8] had a similar finding, where
analysis of land use patterns suffered due to poor spatial resolution
and the generalization of urban land cover.

4.3. Spatial autocorrelation

The GWR  models performed as expected by accounting for local
variance in generating local coefficients and constants. If the resid-

uals are autocorrelated, then it is likely that the model missed a
variable that explains the variation. Several OLS models in this
study had residuals that were spatially autocorrelated. The GWR
models functioned correctly accounting for local variability in land
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over [38]. This suggests that GWR  models, by taking into account
patial autocorrelation, give higher predictive power than tradi-
ional OLS regression models. The GWR  models also suggest how
he relation between water quality and each explanatory variable

ight vary at a local scale.

. Conclusions

This study found that depending on the type of analysis being
erformed, the parameter itself being examined, the season does
ffect the results. While selecting the time period where the water
uality parameter had a higher concentration or value generally

mproved model strength. Topographic variables clearly appear to

e important in determining water quality parameters during the
ry season at both scales.

Across season and parameters, the scale of analysis did matter.
igher R2 values were generated using sectioned watershed scale
 signs and local R2 of GWR.

variables than the smaller buffer scale in 10 cases. Riparian restora-
tion projects should not be discounted, nor should their impact on
stream water quality be exaggerated. The cumulative effect of non-
point sources across a watershed cannot be negated within a zone
a set distance from a stream. Management practices must incorpo-
rate abatement projects watershed-wide instead of focusing on the
stream’s immediate area [11].

The GWR  models did generate higher R2 values than the OLS
models, thus implying that GWR  models account for more varia-
tions in local areas. However, without examining the distribution
of local coefficients and independent variables, the results may
be misinterpreted. Additional analysis would benefit from a wider
sample pool in the watersheds and the ability to remove site out-

liers due to extreme land cover differences, e.g. Jones Creek. While
urban land cover and other structural variables did appear as sig-
nificant in several models, their presence varies greatly across the
study area and also their effect. The GWR  models developed in the
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